Studies in Transition and Time Varying Turbulent Flows
Final Report
Principal Investigator - Chester E. Grosch
12 November 2003 to 11 February 2004
Old Dominion University, Norfolk, Virginia 23529

Grant NAG1-1-02005



Abstract

The reascarch focused on two areas; (a) the dynamics of forced turbulent flows and (b) time
filtered Large Eddy Simulations (TLES). The dynamics of turbulent flows arising from external
forcing of the turbulence are poorly understood. In particular, here are many unanswered
questions relating the basic dynamical balances and the existence or nonexistence of statistical
cquilibrium of forced turbulent flows. This research used direct numerical simulations to explore
these questions. The properties of the temporally filtered Navier-Stokes equations were also
studied



Forced Isotropic Turbulence

The physics of turbulent flows arising from time varying mean flow or forcing is very complex.
There is no accepted theory which can be applied to these types of Hows. LExperiments on these
types of lows are problematical because of the uncertainty in what is statistical equilibrium and
whether or not such a state exists or can exist for these classes of flows. Thus there is a lack of
understanding as to which quantities should be measured and interpreted.

Direct numerical simulation (DNS) is a well known technique for studying the dynamics of
turbulent flows at low and moderate Reynolds numbers. In a pioneering study Rogallo' carried
out a DNS of decaying isotropic turbulence. This flow is in a statistical equilibrinmn at each
instant of time, albeit that the statistical moments, spectruin, ete. are slowly varying functions
of time.

here we cousider both decaying isotropic turbulence and isotropic turbulence with forcing. The
forcing in the present study was applied to a DNS of a turbulent flow in statistical equilibrium.
The DNS code is pseudo-spectral in two directions (z, z3) and uses fourth order finite differences
in the other (ry) direction. The time advancement is done by using a third-order, low storage
Runge-Kutta method. The boundary conditions are periodic in all directions in a cube of size L.
The effect of the forcing must depend on the "size” of the forcing function relative to the "size” of
the turbulent structures. To be more precise, consider the spectrum of, say, isotropic turbulence.
In statistical equilibrium the shape of the spectrum is invariant and contains (1) an cnergy
containing range, (2) an energy transfer range whercin the encrgy from the energy containing
range is transferred to (3) the encrgy dissipation range. These three ranges have different "size”
turbulent structures with the "size” decreasing from (1) thru (2) to (3). Therefore the effect of
forcing will depend on in which range the "size” of the forcing function matches the “size™ of
the turbulent structures.

The most. natural way to match the “size” of the forcing function to the "size™ of the turbulent
structures is to do so in wavenumber (Fourier) space rather than physical space. This arises
because. in wavenumber space, the “size” of the turbulent structure is precisely defined by the



inverse of the corresponding wavenumber. Thus the forcing was done in wavenumber space and
was applied in cach of the three significant dynamical ranges: the energy containing range, the
energy transfer range and the energy dissipation range. These correspond, in wavenumber space,
to the small wavemunbers. the intermediate wavenumbers and the large wavenumbers.

In applying the forcing the objective is fix the energy in the particular range chosen while
permitting these Fourier modes to interact with themselves and all of the other modes. To see
how this can be done. one notes that the energy of a particular Fourier mode is proportional to
the absolute value of the complex Fourier amplitude of that mode while mode-mode interactions
are essentially controlled by phase interactions. Thns to fix the energy iu the particular range of
wavemunbers the amplitudes of the Fourier modes in this range must be held fixed and to permit
these Fourier modes to interact with themselves and all of the other modes requires that the
phases of these Fourier modes be allowed to evolve in accordance with the underlying dynamics,
that is. be governed by the Navier-Stokes equations.

An algorithin to accomplish this requires an initialization and inplementation av each time step.
The initialization consists of first choosing a range of wave numbers. second Fourier analyzing the
velocity field and third. storing the amplitude of every Fourier mode in the appropriate range,
perhaps after having multiplied each of them by some wavenuinber forcing function. Then. at
every subsequent time step. the velocity field must be Fourier analyzed and the amplitude of
the Fourier modes in the forcing range be set equal to the stored amplitude while retaining the
phase unchanged. Finally. this field is inverse Fourier transformed to produce a velocity field
with the prescribed forcing amplitude and appropriate phase distribution. No changes need be
made to the pressure field because it is calculated using the gradients of the velocity field and
so will be consistent with the velocity field.

The results of these DNSs are being analyzed in terms standard dynamical quantities. energy,
dissipation rate, two-point correlations, spectra and so on, in order to determine the effects
of forcing in each of these ranges. Some preliminary results for the case of forcing at high
wavenumbers, 30 < k& < 32. are presented here.




Results of Forcing the High Wavenumbers of Isotropic
Turbulence

Figure 1 is a plot of energy spectra. E(k), as a function of the wavenumber. k. The dashed
black curve is the spectrum at time £, at which forcing began. The colored dashed curves are
the spectra of the unforced turbulence and the colored solid curves are the spectra of the forced
turbulence it the same time as the unforced turbulence. These results are for three suceeding
tunes: red is at £y (¢ > t,). green is at £ (f2 > #;) and green is at f5 (i3 > £,). The solid
black line has a slope of —5/3. Comparision of the dashed curves shows that the unforced
turbulence has reached a self-similar state and that the energy is decaying in time. On the other
hand, the forced turbulence shows different behavior at high wavenumbers as compared to low
wavenumbers. At low wave numbers. say & < 20, the decaying turbulence is self-similar. The
forced peak in 30 < & < 32 is unchanged in time. There is a small region in wavenumnber space.
20 < k < 30 where "back scatter”. i.e. energy transfered from higher to lower wavenumber is
apparent. Finally. for & > 32, the energy level of the forced turbulence, while decaying in time.
is. at any time, higher than that of the unforced turbulence because of the transfer of energy
from the band of wavenumbers where the forcing is occuring.

The dissipation spectra are plotted in Figure 2 with the same conventions of dashed, solid and
color as in Figure 1. The peak in the dissipation spectra of the unforced turbulence shifts to
lower wavemunber as time increases; it is at k about 18 at t, and at k about equal to 12 at ¢;.
The forced turbulence shows similar behavior but this is a secondary peak with the main peak
being that in the forcing wavenumber range and this peak remains constant in time. The "back
scatter” is also readily apparent in this figure.

The isotropy of the turbulence is most readily checked by examining the correlation functions,
here correlations in space at fixed times. The longitudinal and transverse correlations for the
unforced turbulence at i3 are shown in Figure 3. The notation in this figure is of the form
pii(x;) and this denotes the auntocorrelation of velocity component u, at spatial scparation i
with the index k being the value of x;/Ax;. The top panel in Figure 3 shows the longitudinal
autocorrelation functions of u; in the z; direction (solid). u; in the .r» direction (dash) and uj
in the xy direction (dash-dot). The three longitudinal autocorrelation functions are essentially
cequal with only minor differences at large k (large separation). These autocorrelation functions
decay to zero at about k = 30. The middle panel shows the first of the transverse autocorrelation
functions, that of «; in the x, direction (solid), uy in the xy direction (dash) and uy in the o
direction (dash-dot). These functions are essentially equal for k < 10 and have minor differences
at larger wavennbers. Finally. the bottom panel in Figure 3 shows the second set of transverse
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antocorrelation functions, that of u; in the 3 direction (solid). u, in the iz direction (dash) and
ug in the o direction (dash-dot). These functions are very similar to the first set of trausverse
autocorrelation functions. The longitudinal integral length scale. L; = 10.367 and the two trans-
verse integral length scales, Ly = 4.997 and 4.996 for j = 1.2 and the ratio. L;/L;, = 2.075. The
behavior of these autocorrelation functions is those of isotropic turbulence. in particular having
Liy = Ly and L/ Ly approximately equal to 2 (Pope, 2001) The corresponding longitudinal and
transverse correlations for the forced turbulence. also at ¢4, are shown in Figure 4. The notation
is the same as in Figure 3. Comparing Figures 3 and 4, there is no readily apparent. differcuce
and it appears that the forcing has little or no effect of these autocorrelation functions. There
are. however. very small differences caused by the forcing at high wavenumber. These show up
in the integral length scales. For this case of high wavenumber forcing of isotropic turbulence
the longitudinal integral length scale. Ly = 10.014 and the two transverse integral length scalos.
Ly = 4.831 and 1822 for j = 1.2 and the ratio, Li/Li; = 2.073 and 2.077 for j = 1.2. The
high wavenmuber forcing increases the relative amount of energy in the high wavenumbers as
compared to the low wavenumbers. This has the effect of slightly reducing both the longitudinal
integral length scale and both the transverse integral length scales as compared to the unforeed
fow. The ratios of these scales. however, remains quite close to 2 and they differ ouly in the
fourth significant figure.

Figure 5 shows the spatial cross-correlations as functions of spatial separation. In this figure
the solid curve corresponds to separation in the z; direction, the dash curve to separation in
the zy direction and the dash-dot curve to separation in the z3 direction. As in the previous
figures the index k = x;/Ar,. As expected, thesc cross-corrclations are quite small, with the
absolute value of the maximum being approximately 0.05. Also, these cross-correlations show
no symmetry about & = 0. The spatial cross-correlations for the forced case arc shown in Figure
6. Comparing the results shown in these two figures oue can note slight differences between the
forced and nnforced cases. These differences are most apparent near & = 0, roughly in the range
-5 < k < 3. The high wavenumber forcing causes all of the cross-correlations to be cqual in
this range of k: again a subtle change in the structure of the turbulence caused by the forcing,.

The next six figures. Figures 7 thru 12, show instantaneous contours of the velocity components,
;.1 = 1,2,3. on the plane r; = 1/2 at time 3. Figures 7. 9 and 11 are for the unforced case
and Figures 3, 10 and 12 are the results of the forced case. In Figure 7 the contours of «, for the
unforeed turbulence show structures whose sizes range from x;/L about 0.05 to about 0.3. The
arca of positive u; (the red arcas) is somewhat larger than the area of negative w; (the bluc arcas)
but the maximum negative velocity is twice the maximum positive velocity. Figure 8 shows the
contours of «; for the forced turbulence on the same plane and at the same time. Comparing
these two figures one sees that the range of 4y is unchanged and that the larger structures arc
the same in both figures. What is different is that forcing at the high wavemunbers has caused a
much finer scale of motion within and between the larger scales. Figures 9 and 10 show contours




of uy and Figures 11 and 12 show contours of uz on the same plane. These pairs of figures show
that the foreing at high wavenumber have the same effect on uy and «; as on .



Summary

Forcing isotropic tirbulence at high wave numbers has significant effects on both the encrgy
and dissipation spectra: comparision of the energy spectra showed that the unforeed isotropic
turbulence had reached a self-similar state and that the energy was decaying in titme. Ou the
other hand, the forced 10stropic turbulence showed a different behavior at high wavenumbers as
compared 1o low wavenumbers. At low wave numbers, say k& < 20. the decaying turbhilence was
self-similar. The forced peak in 30 < k < 32 was unchanged in time. There was a small region
in wavenunber space, 20 < k£ < 30 where "back scatter” was apparent. Finally. for & > 32.
the energy level of the forced isotropic turbulence. while decaying in time, was. at any time,
higher than that of the unforced turbulence because of the transfer of energy from the band
of wavenumbers where the forcing was occuring. The peak in the dissipation spectra of the
unforced isotropic turbulence shifted to lower wavenumber as time increased. it was at k about
18 at t, and at k about equal to 12 at #3 and the forced turbulence showed similar behavior but
this was a secondary peak with the main peak being that in the forcing wavenumber range and
this peak remained constant in time with the "back scatter” also readily appareunt.

The behavior of the longitudinal and transverse autocorrelation functions was shown to be that of
isotropic turbulence, in particular having Ly; = Ly and L;/L,; approximately equal to 2 for both
unforced and forced isotropic turbulence. There was no readily apparent difference between the
two cases and it appeared that the forcing had little or no effect of the autocorrelation functions.
There were. however, very small differences caused by the forcing at high wavenumber. These
showed up in the integral length scales. The high wavenumber forcing increased the relative
amount of energy in the high wavenumbers as compared to the low wavenumbers. This had the
effect of slightly reducing both the longitudinal integral length scale and both the transverse
integral length scales for the forced flow as compared to the unforced flow. The ratios of these
scales, however, remained quite close to 2 and they differed only in the fourth significant figure.
There are slight differences in the cross-correlations between the forced and unforced cases.
These differences were most apparent near & = 0, roughly in the range —5 < k < 5. The high
wavenumber foreing caused all of the cross-correlations tc be equal in this range of k; again a
subtle change in the structure of the isotropic turbulence caused by the forcing.

Comparing the velocity fields, u;,¢ = 1,2,3 on the plane x; = 1/2 for the unforced and forced
cases showed that the range of the of «; was unchanged and that the larger structures are the
same in both cases. What was different was that forcing at the high wavenumbers had caused
a much finer scale of motion within and between the larger scales.
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Figure 1: Energy spectra, E(k), as a function of the wavenumber, k. The dashed black curve is
the spectrum at time £, at which forcing began. The colored dashed curves are the spectra of
the unforced turbulence and the colored solid curves are the spectra of the forced turbulence at
the same time as the unforced turbulence. These results are for three succeding times; red is at
t1 (t1 > t,), green is at tp (o > t1) and blue is at ¢3 (t3 > t2). The solid black line has a slope
of —5/3.
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Figure 2: Dissipation spectra with the same conventions for the dashed and solid curves and for
the colors as in Figure 1.
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Figure 7: Contours of u; on the plane z; = 1/2 at time #3 for the unforced flow.
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Figure 8: Contours of u; on the plane r; = 1/2 at time ¢3 with forcing at high wavenumbers.
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Figure 9: Contours of us on the plane z; = 1/2 at time ¢3 for the unforced flow.
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Figure 10: Contours of uz on the plane z; = 1/2 at time t3 with forcing at high wavenumbers.
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Figure 11: Contours of uz on the plane z; = 1/2 at time t3 for the unforced flow.
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Figure 12: Contours of us on the plane z; = 1/2 at time t3 with forcing at high wavenumbers.
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